TY - JOUR
T1 - The Spatiotemporal Dynamics and Microevolution Events That Favored the Success of the Highly Clonal Multidrug-Resistant Monophasic Salmonella Typhimurium Circulating in Europe
AU - Cadel-Six, Sabrina
AU - Cherchame, Emeline
AU - Douarre, Pierre Emmanuel
AU - Tang, Yue
AU - Felten, Arnaud
AU - Barbet, Pauline
AU - Litrup, Eva
AU - Banerji, Sangeeta
AU - Simon, Sandra
AU - Pasquali, Federique
AU - Gourmelon, Michèle
AU - Mensah, Nana
AU - Borowiak, Maria
AU - Mistou, Michel Yves
AU - Petrovska, Liljana
N1 - Publisher Copyright:
© Copyright © 2021 Cadel-Six, Cherchame, Douarre, Tang, Felten, Barbet, Litrup, Banerji, Simon, Pasquali, Gourmelon, Mensah, Borowiak, Mistou and Petrovska.
PY - 2021/5/21
Y1 - 2021/5/21
N2 - The European epidemic monophasic variant of Salmonella enterica serovar Typhimurium (S. 1,4,[5],12:i:-) characterized by the multi locus sequence type ST34 and the antimicrobial resistance ASSuT profile has become one of the most common serovars in Europe (EU) and the United States (US). In this study, we reconstructed the time-scaled phylogeny and evolution of this Salmonella in Europe. The epidemic S. 1,4,[5],12:i:- ST34 emerged in the 1980s by an acquisition of the Salmonella Genomic Island (SGI)-4 at the 3′ end of the phenylalanine phe tRNA locus conferring resistance to copper and arsenic toxicity. Subsequent integration of the Tn21 transposon into the fljAB locus gave resistance to mercury toxicity and several classes of antibiotics used in food-producing animals (ASSuT profile). The second step of the evolution occurred in the 1990s, with the integration of mTmV and mTmV-like prophages carrying the perC and/or sopE genes involved in the ability to reduce nitrates in intestinal contents and facilitate the disruption of the junctions of the host intestinal epithelial cells. Heavy metals are largely used as food supplements or pesticide for cultivation of seeds intended for animal feed so the expansion of the epidemic S. 1,4,[5],12:i:- ST34 was strongly related to the multiple-heavy metal resistance acquired by transposons, integrative and conjugative elements and facilitated by the escape until 2011 from the regulatory actions applied in the control of S. Typhimurium in Europe. The genomic plasticity of the epidemic S. 1,4,[5],12:i:- was demonstrated in our study by the analysis of the plasmidome. We were able to identify plasmids harboring genes mediating resistance to phenicols, colistin, and fluoroquinolone and also describe for the first time in six of the analyzed genomes the presence of two plasmids (pERR1744967-1 and pERR2174855-2) previously described only in strains of enterotoxigenic Escherichia coli and E. fergusonii.
AB - The European epidemic monophasic variant of Salmonella enterica serovar Typhimurium (S. 1,4,[5],12:i:-) characterized by the multi locus sequence type ST34 and the antimicrobial resistance ASSuT profile has become one of the most common serovars in Europe (EU) and the United States (US). In this study, we reconstructed the time-scaled phylogeny and evolution of this Salmonella in Europe. The epidemic S. 1,4,[5],12:i:- ST34 emerged in the 1980s by an acquisition of the Salmonella Genomic Island (SGI)-4 at the 3′ end of the phenylalanine phe tRNA locus conferring resistance to copper and arsenic toxicity. Subsequent integration of the Tn21 transposon into the fljAB locus gave resistance to mercury toxicity and several classes of antibiotics used in food-producing animals (ASSuT profile). The second step of the evolution occurred in the 1990s, with the integration of mTmV and mTmV-like prophages carrying the perC and/or sopE genes involved in the ability to reduce nitrates in intestinal contents and facilitate the disruption of the junctions of the host intestinal epithelial cells. Heavy metals are largely used as food supplements or pesticide for cultivation of seeds intended for animal feed so the expansion of the epidemic S. 1,4,[5],12:i:- ST34 was strongly related to the multiple-heavy metal resistance acquired by transposons, integrative and conjugative elements and facilitated by the escape until 2011 from the regulatory actions applied in the control of S. Typhimurium in Europe. The genomic plasticity of the epidemic S. 1,4,[5],12:i:- was demonstrated in our study by the analysis of the plasmidome. We were able to identify plasmids harboring genes mediating resistance to phenicols, colistin, and fluoroquinolone and also describe for the first time in six of the analyzed genomes the presence of two plasmids (pERR1744967-1 and pERR2174855-2) previously described only in strains of enterotoxigenic Escherichia coli and E. fergusonii.
KW - Bayesian analysis
KW - core and accessory genome phylogenetic analyses
KW - epidemic monophasic Typhimurium
KW - microevolution European study
KW - plasmidome
KW - resistome
UR - https://www.scopus.com/pages/publications/85107317190
U2 - 10.3389/fmicb.2021.651124
DO - 10.3389/fmicb.2021.651124
M3 - Article
AN - SCOPUS:85107317190
SN - 1664-302X
VL - 12
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 651124
ER -