TY - JOUR
T1 - The Secretive Liaison of Particulate Matter and SARS-CoV-2. A Hypothesis and Theory Investigation
AU - Mescoli, Ada
AU - Maffei, Giangabriele
AU - Pillo, Gelsomina
AU - Bortone, Giuseppe
AU - Marchesi, Stefano
AU - Morandi, Elena
AU - Ranzi, Andrea
AU - Rotondo, Francesca
AU - Serra, Stefania
AU - Vaccari, Monica
AU - Zauli Sajani, Stefano
AU - Mascolo, Maria Grazia
AU - Jacobs, Miriam Naomi
AU - Colacci, Annamaria
N1 - Publisher Copyright:
© Copyright © 2020 Mescoli, Maffei, Pillo, Bortone, Marchesi, Morandi, Ranzi, Rotondo, Serra, Vaccari, Zauli Sajani, Mascolo, Jacobs and Colacci.
PY - 2020/11/9
Y1 - 2020/11/9
N2 - As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG’s pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.
AB - As the novel coronavirus disease sweeps across the world, there is growing speculation on the role that atmospheric factors may have played on the different distribution of SARS-CoV-2, and on the epidemiological characteristics of COVID-19. Knowing the role that environmental factors play in influenza virus outbreaks, environmental pollution and, in particular, atmospheric airborne (particulate matter, PM) has been considered as a potential key factor in the spread and mortality of COVID-19. A possible role of the PM as the virus carrier has also been debated. The role of PM in exacerbating respiratory and cardiovascular disease has been well recognized. Accumulating evidence support the hypothesis that PM can trigger inflammatory response at molecular, cellular and organ levels. On this basis, we developed the hypothesis that PM may play a role as a booster of COVID-19 rather than as a carrier of SARS-CoV-2. To support our hypothesis, we analyzed the molecular signatures detected in cells exposed to PM samples collected in one of the most affected areas by the COVID-19 outbreak, in Italy. T47D human breast adenocarcinoma cells were chosen to explore the global gene expression changes induced by the treatment with organic extracts of PM 2.5. The analysis of the KEGG’s pathways showed modulation of several gene networks related to the leucocyte transendothelial migration, cytoskeleton and adhesion system. Three major biological process were identified, including coagulation, growth control and immune response. The analysis of the modulated genes gave evidence for the involvement of PM in the endothelial disease, coagulation disorders, diabetes and reproductive toxicity, supporting the hypothesis that PM, directly or through molecular interplay, affects the same molecular targets as so far known for SARS-COV-2, contributing to the cytokines storm and to the aggravation of the symptoms triggered by COVID-19. We provide evidence for a plausible cooperation of receptors and transmembrane proteins, targeted by PM and involved in COVID-19, together with new insights into the molecular interplay of chemicals and pathogens that could be of importance for sustaining public health policies and developing new therapeutic approaches.
KW - COVID-19
KW - SARS-CoV-2
KW - cytokine storm
KW - environmental pollution
KW - molecular mechanisms
KW - molecular signatures
KW - particulate matter
KW - receptors cross-talk
UR - http://www.scopus.com/inward/record.url?scp=85096554407&partnerID=8YFLogxK
U2 - 10.3389/fgene.2020.579964
DO - 10.3389/fgene.2020.579964
M3 - Article
AN - SCOPUS:85096554407
SN - 1664-8021
VL - 11
JO - Frontiers in Genetics
JF - Frontiers in Genetics
M1 - 579964
ER -