TY - JOUR
T1 - The measurement using passive dosemeters of the neutron component of aircraft crew dose
AU - Bartlett, D. T.
AU - Tanner, Richard
AU - Hager, Luke
AU - Lavelle, J.
PY - 1997
Y1 - 1997
N2 - The cosmic radiation field at aviation altitudes can be measured with simple passive detectors. The non-neutron component may be measured by means of thermoluminescence dosimetry or other techniques, and the neutron component may be measured using poly allyl diglycol carbonate (PADC) dosemeters as described in this paper. Effective dose from neutron radiation becomes the larger component for altitudes above about 10 km, in general. The dominance is more pronounced for higher latitudes. The neutron energies range up to the maximum of the incident protons, that is many GeV. However the majority of the dose is contributed by neutrons of a few hundred MeV and less, with two maxima in the fluence spectrum, one between 1 and 10 MeV and the other between 50 and 150 MeV. We have used PADC dosemeters, electrochemically etched, to estimate the neutron component of effective dose. Up to 50 dosemeters are used in a single measurement to obtain an estimate of sufficient precision for total neutron effective doses of 50 μSv and less. The neutron fluence response characteristics of the dosemeter have been measured up to 70 MeV. These are extrapolated up to 180 MeV. This extrapolation is validated, partially, by a comparison of measured and predicted readings in the CERN reference field. From the dosemeter readings for exposure on board aircraft, neutron fluence may be estimated assuming an isotropic radiation field and the estimated neutron fluence spectrum. The neutron fluence may then be converted to effective dose using published values of conversion coefficients with the same assumptions of isotropy and known fluence spectrum. For the measurement results reported here, the calculated spectrum for the CERN concrete shielded field is used.
AB - The cosmic radiation field at aviation altitudes can be measured with simple passive detectors. The non-neutron component may be measured by means of thermoluminescence dosimetry or other techniques, and the neutron component may be measured using poly allyl diglycol carbonate (PADC) dosemeters as described in this paper. Effective dose from neutron radiation becomes the larger component for altitudes above about 10 km, in general. The dominance is more pronounced for higher latitudes. The neutron energies range up to the maximum of the incident protons, that is many GeV. However the majority of the dose is contributed by neutrons of a few hundred MeV and less, with two maxima in the fluence spectrum, one between 1 and 10 MeV and the other between 50 and 150 MeV. We have used PADC dosemeters, electrochemically etched, to estimate the neutron component of effective dose. Up to 50 dosemeters are used in a single measurement to obtain an estimate of sufficient precision for total neutron effective doses of 50 μSv and less. The neutron fluence response characteristics of the dosemeter have been measured up to 70 MeV. These are extrapolated up to 180 MeV. This extrapolation is validated, partially, by a comparison of measured and predicted readings in the CERN reference field. From the dosemeter readings for exposure on board aircraft, neutron fluence may be estimated assuming an isotropic radiation field and the estimated neutron fluence spectrum. The neutron fluence may then be converted to effective dose using published values of conversion coefficients with the same assumptions of isotropy and known fluence spectrum. For the measurement results reported here, the calculated spectrum for the CERN concrete shielded field is used.
KW - Aircraft crew exposure
KW - Cosmic radiation
KW - Dosimetry
KW - Neutrons
KW - PADC track detectors
UR - http://www.scopus.com/inward/record.url?scp=0031282853&partnerID=8YFLogxK
U2 - 10.1016/S1350-4487(97)00131-5
DO - 10.1016/S1350-4487(97)00131-5
M3 - Article
C2 - 11541797
AN - SCOPUS:0031282853
SN - 1350-4487
VL - 28
SP - 519
EP - 524
JO - Radiation Measurements
JF - Radiation Measurements
IS - 1-6
ER -