TY - JOUR
T1 - The importance of evaluating the physicochemical and toxicological properties of a contaminant for remediating environments affected by chemical incidents
AU - Wyke, S.
AU - Peña-Fernández, A.
AU - Brooke, N.
AU - Duarte-Davidson, Raquel
N1 - Publisher Copyright:
© 2014 Elsevier Ltd.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - In the event of a major chemical incident or accident, appropriate tools and technical guidance need to be available to ensure that a robust approach can be adopted for developing a remediation strategy. Remediation and restoration strategies implemented in the aftermath of a chemical incident are a particular concern for public health. As a result an innovative methodology has been developed to help design an effective recovery strategy in the aftermath of a chemical incident that has been developed; the UK Recovery Handbook for Chemical Incidents (UKRHCI). The handbook consists of a six-step decision framework and the use of decision trees specifically designed for three different environments: food production systems, inhabited areas and water environments. It also provides a compendium of evidence-based recovery options (techniques or methods for remediation) that should be selected in relation to their efficacy for removing contaminants from the environment. Selection of effective recovery options in this decision framework involves evaluating the physicochemical and toxicological properties of the chemical(s) involved. Thus, the chemical handbook includes a series of tables with relevant physicochemical and toxicological properties that should be assessed in function of the environment affected. It is essential that the physicochemical properties of a chemical are evaluated and interpreted correctly during the development of a remedial plan in the aftermath of a chemical incident to ensure an effective remedial response. This paper presents a general overview of the key physicochemical and toxicological properties of chemicals that should be evaluated when developing a recovery strategy. Information on how physicochemical properties have impacted on previous remedial responses reported in the literature is also discussed and a number of challenges for remediation are highlighted to include the need to develop novel approaches to remediate sites contaminated by mixtures of chemicals as well as methods for interpreting chemical reactions in different environmental matrices to include how climate change may affect the speciation and mobility of chemicals in the environment.
AB - In the event of a major chemical incident or accident, appropriate tools and technical guidance need to be available to ensure that a robust approach can be adopted for developing a remediation strategy. Remediation and restoration strategies implemented in the aftermath of a chemical incident are a particular concern for public health. As a result an innovative methodology has been developed to help design an effective recovery strategy in the aftermath of a chemical incident that has been developed; the UK Recovery Handbook for Chemical Incidents (UKRHCI). The handbook consists of a six-step decision framework and the use of decision trees specifically designed for three different environments: food production systems, inhabited areas and water environments. It also provides a compendium of evidence-based recovery options (techniques or methods for remediation) that should be selected in relation to their efficacy for removing contaminants from the environment. Selection of effective recovery options in this decision framework involves evaluating the physicochemical and toxicological properties of the chemical(s) involved. Thus, the chemical handbook includes a series of tables with relevant physicochemical and toxicological properties that should be assessed in function of the environment affected. It is essential that the physicochemical properties of a chemical are evaluated and interpreted correctly during the development of a remedial plan in the aftermath of a chemical incident to ensure an effective remedial response. This paper presents a general overview of the key physicochemical and toxicological properties of chemicals that should be evaluated when developing a recovery strategy. Information on how physicochemical properties have impacted on previous remedial responses reported in the literature is also discussed and a number of challenges for remediation are highlighted to include the need to develop novel approaches to remediate sites contaminated by mixtures of chemicals as well as methods for interpreting chemical reactions in different environmental matrices to include how climate change may affect the speciation and mobility of chemicals in the environment.
KW - Chemical incident
KW - Environmental decontamination
KW - Physicochemical and toxicological properties
KW - Recovery and restoration
UR - http://www.scopus.com/inward/record.url?scp=84907631006&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2014.05.002
DO - 10.1016/j.envint.2014.05.002
M3 - Article
C2 - 24874001
AN - SCOPUS:84907631006
SN - 0160-4120
VL - 72
SP - 109
EP - 118
JO - Environment International
JF - Environment International
ER -