TY - JOUR
T1 - The diversity, evolution and ecology of Salmonella in venomous snakes
AU - Pulford, Caisey V.
AU - Wenner, Nicolas
AU - Redway, Martha L.
AU - Rodwell, Ella V.
AU - Webster, Hermione J.
AU - Escudero, Roberta
AU - Kröger, Carsten
AU - Canals, Rocío
AU - Rowe, Will
AU - Lopez, Javier
AU - Hall, Neil
AU - Rowley, Paul D.
AU - Timofte, Dorina
AU - Harrison, Robert A.
AU - Baker, Kate S.
AU - Hinton, Jay C.D.
N1 - Publisher Copyright:
© 2019 Hayashida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019
Y1 - 2019
N2 - Background: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. Methodology/Principle findings: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. Significance: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis.
AB - Background: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. Methodology/Principle findings: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. Significance: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis.
UR - http://www.scopus.com/inward/record.url?scp=85067454504&partnerID=8YFLogxK
U2 - 10.1371/journal.pntd.0007169
DO - 10.1371/journal.pntd.0007169
M3 - Article
C2 - 31163033
AN - SCOPUS:85067454504
SN - 1935-2727
VL - 13
JO - PLoS Neglected Tropical Diseases
JF - PLoS Neglected Tropical Diseases
IS - 6
M1 - e0007169
ER -