Abstract
Molecular screening of new patients suspected for TB could help in the effective control of TB in Pakistan as it is a high TB burden country. It will be informative to understand the prevalence of multi drug resistance for a better drug regimen management in this geographical area. The Rifampicin resistance determining region (RRDR) sequencing was used to identify mutations associated with drug resistance in DNA extracts from 130 known multidrug resistant (MDR) cultured strains and compared with mutations observed in DNA extracts directly from 86 sputum samples from consecutive newly diagnosed cases in Lahore, Pakistan. These newly diagnosed samples were positive for smear microscopy, chest X-ray and presumed sensitive to first line drugs. In the known MDR group the most frequent mutations conferring resistance were found in rpoB531 (n = 51, 39.2%). In the newly diagnosed tuberculosis group with no history of MDR, mutations in rpoB531 were seen in 10 of the samples (11.6%). Collectively, all mutations in the RRDR region studied were observed in 80 (61.5%) of known MDR cases and in 14 (16.3%) of the newly diagnosed cases. Using the RRDR as a surrogate marker for MDR, sequences for the newly diagnosed (presumed sensitive) group indicate much higher levels of MDR than the 3.9% WHO 2015 global estimate and suggests that molecular screening directly from sputum is urgently required to effectively address the detection and treatment gaps to combat MDR in this high burden country.
Original language | English |
---|---|
Article number | e0183363 |
Journal | PLoS ONE |
Volume | 12 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2017 |
Bibliographical note
Funding Information:This work was supported by Higher Education Commission, Pakistan (grant no: 1-8/ HEC/HRD/2015/3697 PIN: IRSIP 28 BMS13).
Publisher Copyright:
© 2017 Hameed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.