TY - JOUR
T1 - Risk of respiratory hospital admission associated with modelled concentrations of Aspergillus fumigatus from composting facilities in England
AU - Roca-Barcelo, Aina
AU - Douglas, Philippa
AU - Fecht, Daniela
AU - Sterrantino, Anna Freni
AU - Williams, Ben
AU - Blangiardo, Marta
AU - Gulliver, John
AU - Hayes, Enda T.
AU - Hansell, Anna L.
N1 - Publisher Copyright:
© 2019 The Authors
PY - 2020/4
Y1 - 2020/4
N2 - Bioaerosols have been associated with adverse respiratory-related health effects and are emitted in elevated concentrations from composting facilities. We used modelled Aspergillus fumigatus concentrations, a good indicator for bioaerosol emissions, to assess associations with respiratory-related hospital admissions. Mean daily Aspergillus fumigatus concentrations were estimated for each composting site for first full year of permit issue from 2005 onwards to 2014 for Census Output Areas (COAs) within 4 km of 76 composting facilities in England, as previously described (Williams et al., 2019). We fitted a hierarchical generalized mixed model to examine the risk of hospital admission with a primary diagnosis of (i) any respiratory condition, (ii) respiratory infections, (iii) asthma, (iv) COPD, (v) diseases due to organic dust, and (vi) Cystic Fibrosis, in relation to quartiles of Aspergillus fumigatus concentrations. Models included a random intercept for each COA to account for over-dispersion, nested within composting facility, on which a random intercept was fitted to account for clustering of the data, with adjustments for age, sex, ethnicity, deprivation, tobacco sales (smoking proxy) and traffic load (as a proxy for traffic-related air pollution). We included 249,748 respiratory-related and 3163 Cystic Fibrosis hospital admissions in 9606 COAs with a population-weighted centroid within 4 km of the 76 included composting facilities. After adjustment for confounders, no statistically significant effect was observed for any respiratory-related (Relative Risk (RR) = 0.99; 95% Confidence Interval (CI) 0.96–1.01) or for Cystic Fibrosis (RR = 1.01; 95% CI 0.56–1.83) hospital admissions for COAs in the highest quartile of exposure. Similar results were observed across all respiratory disease sub-groups. This study does not provide evidence for increased risks of respiratory-related hospitalisations for those living near composting facilities. However, given the limitations in the dispersion modelling, risks cannot be completely ruled out. Hospital admissions represent severe respiratory episodes, so further study would be needed to investigate whether bioaerosols emitted from composting facilities have impacts on less severe episodes or respiratory symptoms.
AB - Bioaerosols have been associated with adverse respiratory-related health effects and are emitted in elevated concentrations from composting facilities. We used modelled Aspergillus fumigatus concentrations, a good indicator for bioaerosol emissions, to assess associations with respiratory-related hospital admissions. Mean daily Aspergillus fumigatus concentrations were estimated for each composting site for first full year of permit issue from 2005 onwards to 2014 for Census Output Areas (COAs) within 4 km of 76 composting facilities in England, as previously described (Williams et al., 2019). We fitted a hierarchical generalized mixed model to examine the risk of hospital admission with a primary diagnosis of (i) any respiratory condition, (ii) respiratory infections, (iii) asthma, (iv) COPD, (v) diseases due to organic dust, and (vi) Cystic Fibrosis, in relation to quartiles of Aspergillus fumigatus concentrations. Models included a random intercept for each COA to account for over-dispersion, nested within composting facility, on which a random intercept was fitted to account for clustering of the data, with adjustments for age, sex, ethnicity, deprivation, tobacco sales (smoking proxy) and traffic load (as a proxy for traffic-related air pollution). We included 249,748 respiratory-related and 3163 Cystic Fibrosis hospital admissions in 9606 COAs with a population-weighted centroid within 4 km of the 76 included composting facilities. After adjustment for confounders, no statistically significant effect was observed for any respiratory-related (Relative Risk (RR) = 0.99; 95% Confidence Interval (CI) 0.96–1.01) or for Cystic Fibrosis (RR = 1.01; 95% CI 0.56–1.83) hospital admissions for COAs in the highest quartile of exposure. Similar results were observed across all respiratory disease sub-groups. This study does not provide evidence for increased risks of respiratory-related hospitalisations for those living near composting facilities. However, given the limitations in the dispersion modelling, risks cannot be completely ruled out. Hospital admissions represent severe respiratory episodes, so further study would be needed to investigate whether bioaerosols emitted from composting facilities have impacts on less severe episodes or respiratory symptoms.
KW - Aspergillus fumigatus
KW - Asthma
KW - Bioaerosol
KW - Composting facility
KW - Respiratory health
UR - http://www.scopus.com/inward/record.url?scp=85083009150&partnerID=8YFLogxK
U2 - 10.1016/j.envres.2019.108949
DO - 10.1016/j.envres.2019.108949
M3 - Article
C2 - 31902481
AN - SCOPUS:85083009150
SN - 0013-9351
VL - 183
JO - Environmental Research
JF - Environmental Research
M1 - 108949
ER -