TY - JOUR
T1 - RENEB Inter-Laboratory Comparison 2021
T2 - The Gamma-H2AX Foci Assay
AU - Moquet, Jayne
AU - Ainsbury, Elizabeth
AU - Balázs, Katalin
AU - Barnard, Stephen
AU - Hristova, Rositsa
AU - Lumniczky, Katlin
AU - Port, Matthias
AU - Roessler, Ute
AU - Scherthan, Harry
AU - Staynova, Albena
AU - Szatmári, Tünde
AU - Wojewodzka, Maria
AU - Abend, Michael
N1 - Publisher Copyright:
© 2023 by Radiation Research Society. All rights of reproduction in any form reserved.
PY - 2023/4/13
Y1 - 2023/4/13
N2 - The Running the European Network of biological and retrospective dosimetry (RENEB) network of laboratories has a range of biological and physical dosimetry assays that can be deployed in the event of a radiation incident to provide exposure assessment. To maintain operational capability and provide training, RENEB runs regular inter-laboratory comparison (ILC) exercises. The RENEB ILC2021 was carried out with all the biological and physical dosimetry assays employed in the network. The focus of this paper is to evaluate the results from 6 laboratories that took part using the gamma-H2AX radiation-induced foci assay. For two laboratories this was their first RENEB ILC. Blood samples were homogenously exposed to 240 kVp X rays (1 Gy/min) to provide calibration data, (0–4 Gy), and a few weeks later three blind coded test samples, (0, 1.2 and 3.5 Gy) were prepared. All samples were allowed a 2 h repair time at 378C before being transported, on ice packs, to the participating laboratories. On arrival, the samples were processed, scored either manually or automatically for gamma-H2AX foci and dose estimates for the 3 blind coded samples sent to the organizing laboratory. The temperature of samples during transit and the time taken to report the dose estimates were recorded. Subsequent examination of the data from each laboratory used the doses estimates to assign triage categories to the samples. After receipt of the samples, the quickest report of dose estimates was 4.6 h. Analysis of variance revealed that the laboratory carrying out the assay had a significant effect on the foci yield (P < 0.001) for the calibration data, but not on the dose estimates of the blind coded samples (P ¼ 0.101). All laboratories correctly identified the unirradiated and irradiated samples, although the dose estimates for the latter tended to under-estimate the dose. Two participants seriously under-estimated the dose for the highly exposed sample, which resulted in the sample being placed in the lowest triage category not the highest. However, this under-estimation resulted from the samples not remaining cold during shipment, due to a delay in transit and was not related to the experience of the participating laboratory. Overall, the RENEB network laboratories have demonstrated it is possible to quickly identify a recent whole-body acute exposure using the gamma-H2AX assay within the conditions of the ILC. In addition, an ILC provides a useful training and harmonization exercise for laboratories.
AB - The Running the European Network of biological and retrospective dosimetry (RENEB) network of laboratories has a range of biological and physical dosimetry assays that can be deployed in the event of a radiation incident to provide exposure assessment. To maintain operational capability and provide training, RENEB runs regular inter-laboratory comparison (ILC) exercises. The RENEB ILC2021 was carried out with all the biological and physical dosimetry assays employed in the network. The focus of this paper is to evaluate the results from 6 laboratories that took part using the gamma-H2AX radiation-induced foci assay. For two laboratories this was their first RENEB ILC. Blood samples were homogenously exposed to 240 kVp X rays (1 Gy/min) to provide calibration data, (0–4 Gy), and a few weeks later three blind coded test samples, (0, 1.2 and 3.5 Gy) were prepared. All samples were allowed a 2 h repair time at 378C before being transported, on ice packs, to the participating laboratories. On arrival, the samples were processed, scored either manually or automatically for gamma-H2AX foci and dose estimates for the 3 blind coded samples sent to the organizing laboratory. The temperature of samples during transit and the time taken to report the dose estimates were recorded. Subsequent examination of the data from each laboratory used the doses estimates to assign triage categories to the samples. After receipt of the samples, the quickest report of dose estimates was 4.6 h. Analysis of variance revealed that the laboratory carrying out the assay had a significant effect on the foci yield (P < 0.001) for the calibration data, but not on the dose estimates of the blind coded samples (P ¼ 0.101). All laboratories correctly identified the unirradiated and irradiated samples, although the dose estimates for the latter tended to under-estimate the dose. Two participants seriously under-estimated the dose for the highly exposed sample, which resulted in the sample being placed in the lowest triage category not the highest. However, this under-estimation resulted from the samples not remaining cold during shipment, due to a delay in transit and was not related to the experience of the participating laboratory. Overall, the RENEB network laboratories have demonstrated it is possible to quickly identify a recent whole-body acute exposure using the gamma-H2AX assay within the conditions of the ILC. In addition, an ILC provides a useful training and harmonization exercise for laboratories.
UR - http://www.scopus.com/inward/record.url?scp=85162016068&partnerID=8YFLogxK
U2 - 10.1667/RADE-22-00205.1
DO - 10.1667/RADE-22-00205.1
M3 - Article
C2 - 37057975
AN - SCOPUS:85162016068
SN - 0033-7587
VL - 199
SP - 591
EP - 597
JO - Radiation Research
JF - Radiation Research
IS - 6
ER -