TY - JOUR
T1 - Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning
AU - The CRyPTIC Consortium
AU - Lachapelle, Alexander S.
AU - Barilar, Ivan
AU - Battaglia, Simone
AU - Borroni, Emanuele
AU - Brandao, Angela P.
AU - Brankin, Alice
AU - Cabibbe, Andrea Maurizio
AU - Carter, Joshua
AU - Cirillo, Daniela Maria
AU - Claxton, Pauline
AU - Clifton, David A.
AU - Cohen, Ted
AU - Coronel, Jorge
AU - Crook, Derrick W.
AU - Dreyer, Viola
AU - Earle, Sarah G.
AU - Escuyer, Vincent
AU - Ferrazoli, Lucilaine
AU - Fowler, Philip W.
AU - Gao, George Fu
AU - Gardy, Jennifer
AU - Gharbia, Saheer
AU - Ghisi, Kelen T.
AU - Ghodousi, Arash
AU - Cruz, Ana Luíza Gibertoni
AU - Grandjean, Louis
AU - Grazian, Clara
AU - Groenheit, Ramona
AU - Guthrie, Jennifer L.
AU - He, Wencong
AU - Hoffmann, Harald
AU - Hoosdally, Sarah J.
AU - Hunt, Martin
AU - Iqbal, Zamin
AU - Ismail, Nazir Ahmed
AU - Jarrett, Lisa
AU - Joseph, Lavania
AU - Jou, Ruwen
AU - Kambli, Priti
AU - Khot, Rukhsar
AU - Knaggs, Jeff
AU - Koch, Anastasia
AU - Kohlerschmidt, Donna
AU - Kouchaki, Samaneh
AU - Lalvani, Ajit
AU - Lapierre, Simon Grandjean
AU - Laurenson, Ian F.
AU - Rathod, Priti
AU - Robinson, Esther
AU - Smith, E. Grace
N1 - Publisher Copyright:
© 2024 The CRyPTIC consortium. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/8
Y1 - 2024/8
N2 - There remains a clinical need for better approaches to rapid drug susceptibility testing in view of the increasing burden of multidrug resistant tuberculosis. Binary susceptibility phenotypes only capture changes in minimum inhibitory concentration when these cross the critical concentration, even though other changes may be clinically relevant. We developed a machine learning system to predict minimum inhibitory concentration from unassembled whole-genome sequencing data for 13 anti-tuberculosis drugs. We trained, validated and tested the system on 10,859 isolates from the CRyPTIC dataset. Essential agreement rates (predicted MIC within one doubling dilution of observed MIC) were above 92% for first-line drugs, 91% for fluoroquinolones and aminoglycosides, and 90% for new and repurposed drugs, albeit with a significant drop in performance for the very few phenotypically resistant isolates in the latter group. To further validate the model in the absence of external MIC datasets, we predicted MIC and converted values to binary for an external set of 15,239 isolates with binary phenotypes, and compare their performance against a previously validated mutation catalogue, the expected performance of existing molecular assays, and World Health Organization Target Product Profiles. The sensitivity of the model on the external dataset was greater than 90% for all drugs except ethionamide, clofazimine and linezolid. Specificity was greater than 95% for all drugs except ethambutol, ethionamide, bedaquiline, delamanid and clofazimine. The proposed system can provide quantitative susceptibility phenotyping to help guide antimicrobial therapy, although further data collection and validation are required before machine learning can be used clinically for all drugs.
AB - There remains a clinical need for better approaches to rapid drug susceptibility testing in view of the increasing burden of multidrug resistant tuberculosis. Binary susceptibility phenotypes only capture changes in minimum inhibitory concentration when these cross the critical concentration, even though other changes may be clinically relevant. We developed a machine learning system to predict minimum inhibitory concentration from unassembled whole-genome sequencing data for 13 anti-tuberculosis drugs. We trained, validated and tested the system on 10,859 isolates from the CRyPTIC dataset. Essential agreement rates (predicted MIC within one doubling dilution of observed MIC) were above 92% for first-line drugs, 91% for fluoroquinolones and aminoglycosides, and 90% for new and repurposed drugs, albeit with a significant drop in performance for the very few phenotypically resistant isolates in the latter group. To further validate the model in the absence of external MIC datasets, we predicted MIC and converted values to binary for an external set of 15,239 isolates with binary phenotypes, and compare their performance against a previously validated mutation catalogue, the expected performance of existing molecular assays, and World Health Organization Target Product Profiles. The sensitivity of the model on the external dataset was greater than 90% for all drugs except ethionamide, clofazimine and linezolid. Specificity was greater than 95% for all drugs except ethambutol, ethionamide, bedaquiline, delamanid and clofazimine. The proposed system can provide quantitative susceptibility phenotyping to help guide antimicrobial therapy, although further data collection and validation are required before machine learning can be used clinically for all drugs.
UR - http://www.scopus.com/inward/record.url?scp=85200992115&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1012260
DO - 10.1371/journal.pcbi.1012260
M3 - Article
C2 - 39102420
AN - SCOPUS:85200992115
SN - 1553-734X
VL - 20
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 8 August
M1 - e1012260
ER -