Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression

Donna Lowe, Kenneth Raj*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)


Age is undoubtedly a major risk factor for heart disease. However, the reason for this is not entirely clear. In the course of our investigation into the mechanism of radiation-induced cardiovascular disease, we made several unexpected findings that inform us on this question. We observed that human coronary endothelial cells, while being able to initiate repair of radiation-induced DNA damage, often fail to complete the repair and become senescent. Such radiation-induced cellular aging occurs through a mutation-independent route. Endothelial cells that aged naturally through replication or as a result of radiation exhibited indistinguishable characteristics. The promoter regions of the CD44 gene in aging endothelial cells become demethylated, and the proteins are highly expressed on the cell surface, making the cells adhesive for monocytes. Adhesion is a cardinal feature that recruits monocytes to the endothelium, allowing them to infiltrate the vessel wall and initiate atherosclerosis. The epigenetic activation of CD44 expression is particularly significant as it causes persistent elevated CD44 protein expression, making senescent endothelial cells chronically adhesive. In addition to understanding why cardiovascular disease increases with age, these observations provide insights into the puzzling association between radiation and cardiovascular disease and highlight the need to consider premature aging as an additional risk of radiation to human health.

Original languageEnglish
Pages (from-to)900-910
Number of pages11
JournalAging Cell
Issue number5
Publication statusPublished - 1 Oct 2014

Bibliographical note

Publisher Copyright:
© 2014 Crown.


  • CD44
  • Endothelium
  • Inflammation
  • Irradiation
  • Monocyte adhesion
  • Senescence


Dive into the research topics of 'Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression'. Together they form a unique fingerprint.

Cite this