TY - JOUR
T1 - Pneumonia After Bacterial or Viral Infection Preceded or Followed by Radiation Exposure
T2 - A Reanalysis of Older Radiobiologic Data and Implications for Low-Dose Radiation Therapy for Coronavirus Disease 2019 Pneumonia
AU - Little, Mark P.
AU - Zhang, Wei
AU - van Dusen, Roy
AU - Hamada, Nobuyuki
N1 - Publisher Copyright:
© 2020
PY - 2021/3/15
Y1 - 2021/3/15
N2 - Purpose: Currently, there are about 15 ongoing clinical studies on low dose radiation therapy for Coronavirus Disease 2019 pneumonia. One of the underlying assumptions is that irradiation of 0.5 to 1.5 Gy is effective at ameliorating viral pneumonia. We aimed to reanalyze all available experimental radiobiologic data to assess evidence for such amelioration. Methods and Materials: With standard statistical survival models, and based on a systematic literature review, we reanalyzed 13 radiobiologic animal data sets published in 1937 to 1973 in which animals (guinea pigs/dogs/cats/rats/mice) received radiation before or after bacterial or viral inoculation, and assessing various health endpoints (mortality/pneumonia morbidity). In most data sets absorbed doses did not exceed 7 Gy. Results: For 6 studies evaluating postinoculation radiation exposure (more relevant to low dose radiation therapy for Coronavirus Disease 2019 pneumonia) the results are heterogeneous, with one study showing a significant increase (P < .001) and another showing a significant decrease (P < .001) in mortality associated with radiation exposure. Among the remaining 4 studies, mortality risk was nonsignificantly increased in 2 studies and nonsignificantly decreased in 2 others (P >. 05). For preinoculation exposure the results are also heterogeneous, with 6 (of 8) data sets showing a significant increase (P < .01) in mortality risk associated with radiation exposure and the other 2 showing a significant decrease (P < .05) in mortality or pneumonitis morbidity risk. Conclusions: These data do not provide support for reductions in morbidity or mortality associated with postinfection radiation exposure. For preinfection radiation exposure the inconsistency of direction of effect is difficult to interpret. One must be cautious about adducing evidence from such published reports of old animal data sets.
AB - Purpose: Currently, there are about 15 ongoing clinical studies on low dose radiation therapy for Coronavirus Disease 2019 pneumonia. One of the underlying assumptions is that irradiation of 0.5 to 1.5 Gy is effective at ameliorating viral pneumonia. We aimed to reanalyze all available experimental radiobiologic data to assess evidence for such amelioration. Methods and Materials: With standard statistical survival models, and based on a systematic literature review, we reanalyzed 13 radiobiologic animal data sets published in 1937 to 1973 in which animals (guinea pigs/dogs/cats/rats/mice) received radiation before or after bacterial or viral inoculation, and assessing various health endpoints (mortality/pneumonia morbidity). In most data sets absorbed doses did not exceed 7 Gy. Results: For 6 studies evaluating postinoculation radiation exposure (more relevant to low dose radiation therapy for Coronavirus Disease 2019 pneumonia) the results are heterogeneous, with one study showing a significant increase (P < .001) and another showing a significant decrease (P < .001) in mortality associated with radiation exposure. Among the remaining 4 studies, mortality risk was nonsignificantly increased in 2 studies and nonsignificantly decreased in 2 others (P >. 05). For preinoculation exposure the results are also heterogeneous, with 6 (of 8) data sets showing a significant increase (P < .01) in mortality risk associated with radiation exposure and the other 2 showing a significant decrease (P < .05) in mortality or pneumonitis morbidity risk. Conclusions: These data do not provide support for reductions in morbidity or mortality associated with postinfection radiation exposure. For preinfection radiation exposure the inconsistency of direction of effect is difficult to interpret. One must be cautious about adducing evidence from such published reports of old animal data sets.
UR - http://www.scopus.com/inward/record.url?scp=85095828058&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2020.09.052
DO - 10.1016/j.ijrobp.2020.09.052
M3 - Article
C2 - 33011212
AN - SCOPUS:85095828058
SN - 0360-3016
VL - 109
SP - 849
EP - 858
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 4
ER -