TY - JOUR
T1 - OCRL controls trafficking through early endosomes via PtdIns4,5P 2-dependent regulation of endosomal actin
AU - Vicinanza, Mariella
AU - Di Campli, Antonella
AU - Polishchuk, Elena
AU - Santoro, Michele
AU - Di Tullio, Giuseppe
AU - Godi, Anna
AU - Levtchenko, Elena
AU - De Leo, Maria Giovanna
AU - Polishchuk, Roman
AU - Sandoval, Lisette
AU - Marzolo, Maria Paz
AU - De Matteis, Maria Antonietta
PY - 2011/12/14
Y1 - 2011/12/14
N2 - Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P 2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P 2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P 2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment.
AB - Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P 2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P 2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P 2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment.
KW - Lowe syndrome
KW - actin
KW - early endosomes
KW - megalin
KW - phosphoinositides
UR - http://www.scopus.com/inward/record.url?scp=83555163852&partnerID=8YFLogxK
U2 - 10.1038/emboj.2011.354
DO - 10.1038/emboj.2011.354
M3 - Article
C2 - 21971085
AN - SCOPUS:83555163852
VL - 30
SP - 4970
EP - 4985
JO - EMBO Journal
JF - EMBO Journal
SN - 0261-4189
IS - 24
ER -