Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance

Neil Woodford*, Jane Turton, David M. Livermore

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

687 Citations (Scopus)


Multilocus sequence typing reveals that many bacterial species have a clonal structure and that some clones are widespread. This underlying phylogeny was not revealed by pulsed-field gel electrophoresis, a method better suited to short-term outbreak investigation. Some global clones are multiresistant and it is easy to assume that these have disseminated from single foci. Such conclusions need caution, however, unless there is a clear epidemiological trail, as with KPC carbapenemase-positive Klebsiella pneumoniae ST258 from Greece to northwest Europe. Elsewhere, established clones may have repeatedly and independently acquired resistance. Thus, the global ST131 Escherichia coli clone most often has CTX-M-15 extended-spectrum β-lactamase (ESBL), but also occurs without ESBLs and as a host of many other ESBL types. We explore this interaction of clone and resistance for E. coli, K. pneumoniae, Acinetobacter baumannii- a species where three global lineages dominate - and Pseudomonas aeruginosa, which shows clonal diversity, but includes the relatively 'tight' serotype O12/Burst Group 4 cluster that has proved adept at acquiring resistances - from PSE-1 to VIM-1 β-lactamases - for over 20 years. In summary, 'high-risk clones' play a major role in the spread of resistance, with the risk lying in their tenacity - deriving from poorly understood survival traits - and a flexible ability to accumulate and switch resistance, rather than to constant resistance batteries.

Original languageEnglish
Pages (from-to)736-755
Number of pages20
JournalFEMS Microbiology Reviews
Issue number5
Publication statusPublished - Sept 2011


  • Acinetobacter
  • Carbapenemase
  • ESBL
  • Enterobacteriaceae
  • Pseudomonas


Dive into the research topics of 'Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance'. Together they form a unique fingerprint.

Cite this