Multi-resolution bayesian regression in PET dynamic studies using wavelets

F. E. Turkheimer*, J. A.D. Aston, M. C. Asselin, R. Hinz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

In the kinetic analysis of dynamic PET data, one usually posits that the variation of the data through one dimension, time, can be described by a mathematical model encapsulating the relevant physiological features of the radioactive tracer. In this work, we posit that the remaining dimension, space, can also be modeled as a physiological feature, and we introduce this concept into a new computational procedure for the production of parametric maps. An organ and, in the instance considered here, the brain presents similarities in the physiological properties of its elements across scales: computationally, this similarity can be implemented in two stages. Firstly, a multi-scale decomposition of the dynamic frames is created through the wavelet transform. Secondly, kinetic analysis is performed in wavelet space and the kinetic parameters estimated at low resolution are used as priors to inform estimates at higher resolutions. Kinetic analysis in the above scheme is achieved by extension of the Patlak analysis through Bayesian linear regression that retains the simplicity and speed of the original procedure. Application to artificial and real data (FDG and FDOPA) demonstrates the ability of the procedure to reduce remarkably the variance of parametric maps (up to 4-fold reduction) without introducing sizeable bias. Significance of the methodology and extension of the procedure to other data (fMRI) and models are discussed.

Original languageEnglish
Pages (from-to)111-121
Number of pages11
JournalNeuroImage
Volume32
Issue number1
DOIs
Publication statusPublished - 2006
Externally publishedYes

Keywords

  • Bayesian regression
  • FDG
  • FDOPA
  • Kinetic modeling
  • PET
  • Patlak plot
  • Wavelets

Fingerprint

Dive into the research topics of 'Multi-resolution bayesian regression in PET dynamic studies using wavelets'. Together they form a unique fingerprint.

Cite this