Abstract
In September 1999 a criticality accident occurred in a uranium processing plant in Tokai-mura, Japan. During the accident, three workers (A, B and C) were exposed to high acute doses of neutrons and γ-rays: workers A and B fatally and worker C to an estimated whole body absorbed dose of 0. 81 Gy neutrons and 1. 3 Gy γ-rays. We obtained fixed peripheral blood lymphocytes (PBL) preparations from worker C approximately four and five years after the accident and assayed by 24 colour karyotyping (M-FISH) to determine the frequency and complexity of chromosome aberrations present. We observed a high frequency of simple reciprocal translocations, which we used to provide a rough estimation of dose and, in addition, for the assessment of the emergence of any clinically-relevant clonal exchanges. We did not observe any evidence of clonality but did find some evidence suggesting chromosome 1 as being preferentially involved in exchanges in stable cells. We also detected a relatively high frequency of damaged cells containing complex chromosome aberrations, of both the stable and unstable types. Qualitatively these complex aberrations were consistent with those observed to be induced after exposure to low doses of high-LET radiation or moderate doses of low-LET radiation, supporting the suggestion that heavily damaged cells can be quite long-lived in vivo.
Original language | English |
---|---|
Pages (from-to) | 300-308 |
Number of pages | 9 |
Journal | Journal of Radiation Research |
Volume | 52 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- 24-colour karyotyping
- Complex aberrations
- Radiation-induced chromosome aberrations