Abstract
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
Original language | English |
---|---|
Article number | e2113561119 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 119 |
Issue number | 15 |
DOIs | |
Publication status | Published - 12 Apr 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 National Academy of Sciences. All rights reserved.
Keywords
- COVID-19
- ensemble forecast
- forecasting
- model evaluation
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 119, No. 15, e2113561119, 12.04.2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States
AU - Cramer, Estee Y.
AU - Ray, Evan L.
AU - Lopez, Velma K.
AU - Bracher, Johannes
AU - Brennen, Andrea
AU - Castro Rivadeneira, Alvaro J.
AU - Gerding, Aaron
AU - Gneiting, Tilmann
AU - House, Katie H.
AU - Huang, Yuxin
AU - Jayawardena, Dasuni
AU - Kanji, Abdul H.
AU - Khandelwal, Ayush
AU - Le, Khoa
AU - Mühlemann, Anja
AU - Niemi, Jarad
AU - Shah, Apurv
AU - Stark, Ariane
AU - Wang, Yijin
AU - Wattanachit, Nutcha
AU - Zorn, Martha W.
AU - Gu, Youyang
AU - Jain, Sansiddh
AU - Bannur, Nayana
AU - Deva, Ayush
AU - Kulkarni, Mihir
AU - Merugu, Srujana
AU - Raval, Alpan
AU - Shingi, Siddhant
AU - Tiwari, Avtansh
AU - White, Jerome
AU - Abernethy, Neil F.
AU - Woody, Spencer
AU - Dahan, Maytal
AU - Fox, Spencer
AU - Gaither, Kelly
AU - Lachmann, Michael
AU - Meyers, Lauren Ancel
AU - Scott, James G.
AU - Tec, Mauricio
AU - Srivastava, Ajitesh
AU - George, Glover E.
AU - Cegan, Jeffrey C.
AU - Dettwiller, Ian D.
AU - England, William P.
AU - Farthing, Matthew W.
AU - Hunter, Robert H.
AU - Lafferty, Brandon
AU - Linkov, Igor
AU - Mayo, Michael L.
AU - Parno, Matthew D.
AU - Rowland, Michael A.
AU - Trump, Benjamin D.
AU - Zhang-James, Yanli
AU - Chen, Samuel
AU - Faraone, Stephen V.
AU - Hess, Jonathan
AU - Morley, Christopher P.
AU - Salekin, Asif
AU - Wang, Dongliang
AU - Corsetti, Sabrina M.
AU - Baer, Thomas M.
AU - Eisenberg, Marisa C.
AU - Falb, Karl
AU - Huang, Yitao
AU - Martin, Emily T.
AU - McCauley, Ella
AU - Myers, Robert L.
AU - Schwarz, Tom
AU - Sheldon, Daniel
AU - Gibson, Graham Casey
AU - Yu, Rose
AU - Gao, Liyao
AU - Ma, Yian
AU - Wu, Dongxia
AU - Yan, Xifeng
AU - Jin, Xiaoyong
AU - Wang, Yu Xiang
AU - Chen, Yang Quan
AU - Guo, Lihong
AU - Zhao, Yanting
AU - Gu, Quanquan
AU - Chen, Jinghui
AU - Wang, Lingxiao
AU - Xu, Pan
AU - Zhang, Weitong
AU - Zou, Difan
AU - Biegel, Hannah
AU - Lega, Joceline
AU - McConnell, Steve
AU - Nagraj, V. P.
AU - Guertin, Stephanie L.
AU - Hulme-Lowe, Christopher
AU - Turner, Stephen D.
AU - Shi, Yunfeng
AU - Ban, Xuegang
AU - Walraven, Robert
AU - Hong, Qi Jun
AU - Kong, Stanley
AU - van de Walle, Axel
AU - Turtle, James A.
AU - Ben-Nun, Michal
AU - Riley, Steven
AU - Riley, Pete
AU - Koyluoglu, Ugur
AU - DesRoches, David
AU - Forli, Pedro
AU - Hamory, Bruce
AU - Kyriakides, Christina
AU - Leis, Helen
AU - Milliken, John
AU - Moloney, Michael
AU - Morgan, James
AU - Nirgudkar, Ninad
AU - Ozcan, Gokce
AU - Piwonka, Noah
AU - Ravi, Matt
AU - Schrader, Chris
AU - Shakhnovich, Elizabeth
AU - Siegel, Daniel
AU - Spatz, Ryan
AU - Stiefeling, Chris
AU - Wilkinson, Barrie
AU - Wong, Alexander
AU - Cavany, Sean
AU - España, Guido
AU - Moore, Sean
AU - Oidtman, Rachel
AU - Perkins, Alex
AU - Kraus, David
AU - Kraus, Andrea
AU - Gao, Zhifeng
AU - Bian, Jiang
AU - Cao, Wei
AU - Ferres, Juan Lavista
AU - Li, Chaozhuo
AU - Liu, Tie Yan
AU - Xie, Xing
AU - Zhang, Shun
AU - Zheng, Shun
AU - Vespignani, Alessandro
AU - Chinazzi, Matteo
AU - Davis, Jessica T.
AU - Mu, Kunpeng
AU - Pastore y Piontti, Ana
AU - Xiong, Xinyue
AU - Zheng, Andrew
AU - Baek, Jackie
AU - Farias, Vivek
AU - Georgescu, Andreea
AU - Levi, Retsef
AU - Sinha, Deeksha
AU - Wilde, Joshua
AU - Perakis, Georgia
AU - Bennouna, Mohammed Amine
AU - Nze-Ndong, David
AU - Singhvi, Divya
AU - Spantidakis, Ioannis
AU - Thayaparan, Leann
AU - Tsiourvas, Asterios
AU - Sarker, Arnab
AU - Jadbabaie, Ali
AU - Shah, Devavrat
AU - Penna, Nicolas Della
AU - Celi, Leo A.
AU - Sundar, Saketh
AU - Wolfinger, Russ
AU - Osthus, Dave
AU - Castro, Lauren
AU - Fairchild, Geoffrey
AU - Michaud, Isaac
AU - Karlen, Dean
AU - Kinsey, Matt
AU - Mullany, Luke C.
AU - Rainwater-Lovett, Kaitlin
AU - Shin, Lauren
AU - Tallaksen, Katharine
AU - Wilson, Shelby
AU - Lee, Elizabeth C.
AU - Dent, Juan
AU - Grantz, Kyra H.
AU - Hill, Alison L.
AU - Kaminsky, Joshua
AU - Kaminsky, Kathryn
AU - Keegan, Lindsay T.
AU - Lauer, Stephen A.
AU - Lemaitre, Joseph C.
AU - Lessler, Justin
AU - Meredith, Hannah R.
AU - Perez-Saez, Javier
AU - Shah, Sam
AU - Smith, Claire P.
AU - Truelove, Shaun A.
AU - Wills, Josh
AU - Marshall, Maximilian
AU - Gardner, Lauren
AU - Nixon, Kristen
AU - Burant, John C.
AU - Wang, Lily
AU - Gao, Lei
AU - Gu, Zhiling
AU - Kim, Myungjin
AU - Li, Xinyi
AU - Wang, Guannan
AU - Wang, Yueying
AU - Yu, Shan
AU - Reiner, Robert C.
AU - Barber, Ryan
AU - Gakidou, Emmanuela
AU - Hay, Simon I.
AU - Lim, Steve
AU - Murray, Chris
AU - Pigott, David
AU - Gurung, Heidi L.
AU - Baccam, Prasith
AU - Stage, Steven A.
AU - Suchoski, Bradley T.
AU - Prakash, B. Aditya
AU - Adhikari, Bijaya
AU - Cui, Jiaming
AU - Rodríguez, Alexander
AU - Tabassum, Anika
AU - Xie, Jiajia
AU - Keskinocak, Pinar
AU - Asplund, John
AU - Baxter, Arden
AU - Oruc, Buse Eylul
AU - Serban, Nicoleta
AU - Arik, Sercan O.
AU - Dusenberry, Mike
AU - Epshteyn, Arkady
AU - Kanal, Elli
AU - Le, Long T.
AU - Li, Chun Liang
AU - Pfister, Tomas
AU - Sava, Dario
AU - Sinha, Rajarishi
AU - Tsai, Thomas
AU - Yoder, Nate
AU - Yoon, Jinsung
AU - Zhang, Leyou
AU - Abbott, Sam
AU - Bosse, Nikos I.
AU - Funk, Sebastian
AU - Hellewell, Joel
AU - Meakin, Sophie R.
AU - Sherratt, Katharine
AU - Zhou, Mingyuan
AU - Kalantari, Rahi
AU - Yamana, Teresa K.
AU - Pei, Sen
AU - Shaman, Jeffrey
AU - Li, Michael L.
AU - Bertsimas, Dimitris
AU - Lami, Omar Skali
AU - Soni, Saksham
AU - Bouardi, Hamza Tazi
AU - Ayer, Turgay
AU - Adee, Madeline
AU - Chhatwal, Jagpreet
AU - Dalgic, Ozden O.
AU - Ladd, Mary A.
AU - Linas, Benjamin P.
AU - Mueller, Peter
AU - Xiao, Jade
AU - Wang, Yuanjia
AU - Wang, Qinxia
AU - Xie, Shanghong
AU - Zeng, Donglin
AU - Green, Alden
AU - Bien, Jacob
AU - Brooks, Logan
AU - Hu, Addison J.
AU - Jahja, Maria
AU - McDonald, Daniel
AU - Narasimhan, Balasubramanian
AU - Politsch, Collin
AU - Rajanala, Samyak
AU - Rumack, Aaron
AU - Simon, Noah
AU - Tibshirani, Ryan J.
AU - Tibshirani, Rob
AU - Ventura, Valerie
AU - Wasserman, Larry
AU - O’Dea, Eamon B.
AU - Drake, John M.
AU - Pagano, Robert
AU - Tran, Quoc T.
AU - Ho, Lam Si Tung
AU - Huynh, Huong
AU - Walker, Jo W.
AU - Slayton, Rachel B.
AU - Johansson, Michael A.
AU - Biggerstaff, Matthew
AU - Reich, Nicholas G.
N1 - Publisher Copyright: © 2022 National Academy of Sciences. All rights reserved.
PY - 2022/4/12
Y1 - 2022/4/12
N2 - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
AB - Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
KW - COVID-19
KW - ensemble forecast
KW - forecasting
KW - model evaluation
UR - http://www.scopus.com/inward/record.url?scp=85127843410&partnerID=8YFLogxK
U2 - 10.1073/pnas.2113561119
DO - 10.1073/pnas.2113561119
M3 - Article
C2 - 35394862
AN - SCOPUS:85127843410
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 15
M1 - e2113561119
ER -