Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling

Nicholas F. Brazeau, Robert Verity, Sara Jenks, Han Fu, Charles Whittaker, Peter Winskill, Ilaria Dorigatti, Patrick G.T. Walker, Steven Riley, Ricardo P. Schnekenberg, Henrique Hoeltgebaum, Thomas A. Mellan, Swapnil Mishra, H. Juliette T. Unwin, Oliver J. Watson, Zulma M. Cucunubá, Marc Baguelin, Lilith Whittles, Samir Bhatt, Azra C. GhaniNeil M. Ferguson, Lucy C. Okell*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Background: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. Methods: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. Results: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49–2.53%. Conclusion: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics.

Original languageEnglish
Article number54
JournalCommunications Medicine
Volume2
Issue number1
DOIs
Publication statusPublished - Dec 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

Fingerprint

Dive into the research topics of 'Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling'. Together they form a unique fingerprint.

Cite this