TY - JOUR
T1 - Epigenetic signature of ionizing radiation in therapy-related AML patients
AU - O'Brien, Gráinne
AU - Cecotka, Agnieszka
AU - Manola, Kalliopi N.
AU - Pagoni, Maria N.
AU - Polanska, Joanna
AU - Badie, Christophe
N1 - Publisher Copyright:
© 2023
PY - 2024/1/15
Y1 - 2024/1/15
N2 - Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10–20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.
AB - Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10–20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.
UR - http://www.scopus.com/inward/record.url?scp=85179467489&partnerID=8YFLogxK
U2 - 10.1016/j.heliyon.2023.e23244
DO - 10.1016/j.heliyon.2023.e23244
M3 - Article
AN - SCOPUS:85179467489
SN - 2405-8440
VL - 10
JO - Heliyon
JF - Heliyon
IS - 1
M1 - e23244
ER -