TY - JOUR
T1 - Effects of anterior temporal lobe resection on cortical morphology
AU - Leiberg, Karoline
AU - de Tisi, Jane
AU - Duncan, John S.
AU - Little, Bethany
AU - Taylor, Peter N.
AU - Vos, Sjoerd B.
AU - Winston, Gavin P.
AU - Mota, Bruno
AU - Wang, Yujiang
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/9
Y1 - 2023/9
N2 - Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2–13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures K, I, and S, where K measures white matter tension, I captures isometric scaling, and S contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.
AB - Neuroimaging can capture brain restructuring after anterior temporal lobe resection (ATLR), a surgical procedure to treat drug-resistant temporal lobe epilepsy (TLE). Here, we examine the effects of this surgery on brain morphology measured in recently-proposed independent variables. We studied 101 individuals with TLE (55 left, 46 right onset) who underwent ATLR. For each individual we considered one pre-surgical MRI and one follow-up MRI 2–13 months after surgery. We used a surface-based method to locally compute traditional morphological variables, and the independent measures K, I, and S, where K measures white matter tension, I captures isometric scaling, and S contains the remaining information about cortical shape. A normative model trained on data from 924 healthy controls was used to debias the data and account for healthy ageing effects occurring during scans. A SurfStat random field theory clustering approach assessed changes across the cortex caused by ATLR. Compared to preoperative data, surgery had marked effects on all morphological measures. Ipsilateral effects were located in the orbitofrontal and inferior frontal gyri, the pre- and postcentral gyri and supramarginal gyrus, and the lateral occipital gyrus and lingual cortex. Contralateral effects were in the lateral occipital gyrus, and inferior frontal gyrus and frontal pole. The restructuring following ATLR is reflected in widespread morphological changes, mainly in regions near the resection, but also remotely in regions that are structurally connected to the anterior temporal lobe. The causes could include mechanical effects, Wallerian degeneration, or compensatory plasticity. The study of independent measures revealed additional effects compared to traditional measures.
KW - Cortical morphology
KW - Epilepsy surgery
KW - Structural MRI
KW - Temporal lobe epilepsy
UR - http://www.scopus.com/inward/record.url?scp=85163486223&partnerID=8YFLogxK
U2 - 10.1016/j.cortex.2023.04.018
DO - 10.1016/j.cortex.2023.04.018
M3 - Article
AN - SCOPUS:85163486223
SN - 0010-9452
VL - 166
SP - 233
EP - 242
JO - Cortex
JF - Cortex
ER -