Abstract
Many infection prevention and control (IPC) interventions have been adopted by hospitals to limit nosocomial transmission of SARS-CoV-2. The aim of this systematic review is to identify evidence on the effectiveness of these interventions. We conducted a literature search of five databases (OVID MEDLINE, Embase, CENTRAL, COVID-19 Portfolio (pre-print), Web of Science). SWIFT ActiveScreener software was used to screen English titles and abstracts published between 1st January 2020 and 6th April 2021. Intervention studies, defined by Cochrane Effective Practice and Organisation of Care, that evaluated IPC interventions with an outcome of SARS-CoV-2 infection in either patients or healthcare workers were included. Personal protective equipment (PPE) was excluded as this intervention had been previously reviewed. Risks of bias were assessed using the Cochrane tool for randomised trials (RoB2) and non-randomized studies of interventions (ROBINS-I). From 23,156 screened articles, we identified seven articles that met the inclusion criteria, all of which evaluated interventions to prevent infections in healthcare workers and the majority of which were focused on effectiveness of prophylaxes. Due to heterogeneity in interventions, we did not conduct a meta-analysis. All agents used for prophylaxes have little to no evidence of effectiveness against SARS-CoV-2 infections. We did not find any studies evaluating the effectiveness of interventions including but not limited to screening, isolation and improved ventilation. There is limited evidence from interventional studies, excluding PPE, evaluating IPC measures for SARS-CoV-2. This review calls for urgent action to implement such studies to inform policies to protect our most vulnerable populations and healthcare workers.
Original language | English |
---|---|
Article number | 100192 |
Journal | Infection Prevention in Practice |
Volume | 4 |
Issue number | 1 |
Early online date | 29 Nov 2021 |
DOIs | |
Publication status | Published - Mar 2022 |
Bibliographical note
Funding Information: This work was supported by a UK Medical Research Council Skills Development Fellowship (grant number MR/P014658/1 to GMK) and the Society for Laboratory Automation and Screening (grant number: SLAS_VS2020 to TMP). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the Society for Laboratory Automation and Screening. This work was also supported by a joint grant from UKRI and NIHR (grant number: COV0357/MR/V028456/1 to GMK, supporting YJ, JMR, BC and JVR, grant number MR/V038613/1 for JMR). Support was also received from the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England (PHE) (grant number: NIHR200915 supporting BC and JVR). Further support was provided by a Singapore National Medical Research Council Research Fellowship (grant number: NMRC/Fellowship/0051/2017 to MY).The following funding sources are acknowledged as providing funding for the CMMID working group authors. This research was partly funded by the Bill & Melinda Gates Foundation (INV-001754: MQ; INV-003174: KP, MJ, YL; INV-016832: SRP, KA; NTD Modelling Consortium OPP1184344: CABP, GFM; OPP1191821: KO'R; OPP1157270: KA; OPP1139859: BJQ). CADDE MR/S0195/1 & FAPESP 18/14389–0 (PM). EDCTP2 (RIA2020EF-2983-CSIGN: HPG). ERC Starting Grant (#757699: MQ). ERC (SG 757688: CJVA, KEA). This project has received funding from the European Union's Horizon 2020 research and innovation programme - project EpiPose (101003688: AG, KLM, KP, MJ, RCB, YL; 101003688: WJE). FCDO/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z: CABP). This research was partly funded by the Global Challenges Research Fund (GCRF) project ‘RECAP’ managed through RCUK and ESRC (ES/P010873/1: CIJ). HDR UK (MR/S003975/1: RME). HPRU (This research was partly funded by the National Institute for Health Research (NIHR) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care200908: NIB). MRC (MR/N013638/1: EF; MR/V027956/1: WW). Nakajima Foundation (AE). NIHR (16/136/46: BJQ; 16/137/109: BJQ; PR-OD-1017-20002: WJE; 16/137/109: FYS, MJ, YL; 1R01AI141534-01A1: DH; NIHR200908: AJK, LACC, RME; NIHR200929: CVM, FGS, MJ, NGD; PR-OD-1017-20002: AR). Royal Society (Dorothy Hodgkin Fellowship: RL). Singapore Ministry of Health (RP). UK DHSC/UK Aid/NIHR (PR-OD-1017-20001: HPG). UK MRC (MC_PC_19065 - Covid 19: Understanding the dynamics and drivers of the COVID-19 epidemic using real-time outbreak analytics: SC, WJE, NGD, RME, YL). Wellcome Trust (206250/Z/17/Z: AJK; 206471/Z/17/Z: OJB; 210758/Z/18/Z: JDM, JH, KS, SA, SRM; 221303/Z/20/Z: MK; 206250/Z/17/Z: TWR; 208812/Z/17/Z: SC, SFlasche). No funding (DCT, SH).
Open Access: y. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Publisher Copyright: © 2021 The Authors. Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
Citation: Yalda Jafari, Mo Yin, Cherry Lim, Diane Pople, Stephanie Evans, James Stimson, Thi Mui Pham, Jonathan M. Read, Julie V. Robotham, Ben S. Cooper, Gwenan M. Knight, Effectiveness of infection prevention and control interventions, excluding personal protective equipment, to prevent nosocomial transmission of SARS-CoV-2: a systematic review and call for action, Infection Prevention in Practice, Volume 4, Issue 1, 2022, 100192, ISSN 2590-0889,
DOI: https://doi.org/10.1016/j.infpip.2021.100192.