Abstract
Deep learning (DL) enabled liquid-based cytology has potential for cervical cancer screening or triage. Here, we develop a DL model using whole cytology slides from 17,397 women and test it on 10,826 additional cases through a three-stage process. The DL model achieves robust performance across nine hospitals. In a multi-reader, multi-case study, it outperforms cytopathologists’ sensitivity by 9%. Reading time significantly decreases with DL assistance (218s vs 30s; p < 0.0001). In community-based organized screening, the DL model’s sensitivity matches that of senior cytopathologists (0.878 vs 0.854; p > 0.999), yet it has reduced specificity (0.831 vs 0.901; p < 0.0001). Notably, hospital-based opportunistic screening shows that junior cytopathologists with DL assistance significantly improve both their sensitivity and specificity (0.857 vs 0.657, 0.840 vs 0.737; both p < 0.0001). When triaging human papillomavirus-positive cases, DL assistance exhibits better performance than junior cytopathologists alone. These findings support using the DL model as an assistance tool in cervical screening and case triage.
| Original language | English |
|---|---|
| Article number | 3506 |
| Journal | Nature Communications |
| Volume | 16 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - Dec 2025 |
| Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s) 2025.