TY - JOUR
T1 - Correlation between phylogroups and intracellular proteomes of propionibacterium acnes and differences in the protein expression profiles between anaerobically and aerobically grown cells
AU - Dekio, Itaru
AU - Culak, Renata
AU - Fang, Min
AU - Ball, Graham
AU - Gharbia, Saheer
AU - Shah, Haroun N.
PY - 2013
Y1 - 2013
N2 - Propionibacterium acnes is one of the dominant commensals on the human skin and also an opportunistic pathogen in relation to acne, sarcoidosis, prostate cancer, and various infections. Recent investigations using housekeeping and virulence genes have revealed that the species consists of three major evolutionary clades (types I, II, and III). In order to investigate protein expression differences between these phylogroups, proteomic profiles of 21 strains of P. acnes were investigated. The proteins extracted from cells cultured under anaerobic and aerobic conditions were analysed using a SELDI-TOF mass spectrometer, high-resolution capillary gel electrophoresis, and LC-MS/ MS. The SELDI spectral profiles were visualised as a heat map and a dendrogram, which resulted in four proteomic groups. Strains belonging to type I were represented in the proteome Group A, while Group B contained type III strains. Groups C and D contained mixtures of types I and II. Each of these groups was not influenced by differences in culture conditions. Under anoxic growth conditions, a type IB strain yielded high expressions of some proteins, such as methylmalonyl-CoA epimerase and the Christie-Atkins-Munch-Petersen (CAMP) factor. The present study revealed good congruence between genomic and proteomic data suggesting that the microenvironment of each subtype may influence protein expression.
AB - Propionibacterium acnes is one of the dominant commensals on the human skin and also an opportunistic pathogen in relation to acne, sarcoidosis, prostate cancer, and various infections. Recent investigations using housekeeping and virulence genes have revealed that the species consists of three major evolutionary clades (types I, II, and III). In order to investigate protein expression differences between these phylogroups, proteomic profiles of 21 strains of P. acnes were investigated. The proteins extracted from cells cultured under anaerobic and aerobic conditions were analysed using a SELDI-TOF mass spectrometer, high-resolution capillary gel electrophoresis, and LC-MS/ MS. The SELDI spectral profiles were visualised as a heat map and a dendrogram, which resulted in four proteomic groups. Strains belonging to type I were represented in the proteome Group A, while Group B contained type III strains. Groups C and D contained mixtures of types I and II. Each of these groups was not influenced by differences in culture conditions. Under anoxic growth conditions, a type IB strain yielded high expressions of some proteins, such as methylmalonyl-CoA epimerase and the Christie-Atkins-Munch-Petersen (CAMP) factor. The present study revealed good congruence between genomic and proteomic data suggesting that the microenvironment of each subtype may influence protein expression.
UR - http://www.scopus.com/inward/record.url?scp=84880175304&partnerID=8YFLogxK
U2 - 10.1155/2013/151797
DO - 10.1155/2013/151797
M3 - Article
C2 - 23878795
AN - SCOPUS:84880175304
VL - 2013
JO - BioMed Research International
JF - BioMed Research International
SN - 2314-6133
M1 - 151797
ER -