TY - JOUR
T1 - Characterization of emergent toxigenic M1UK Streptococcus pyogenes and associated sublineages
AU - Li, Ho Kwong
AU - Zhi, Xiangyun
AU - Vieira, Ana
AU - Whitwell, Harry J.
AU - Schricker, Amelia
AU - Jauneikaite, Elita
AU - Li, Hanqi
AU - Yosef, Ahmed
AU - Andrew, Ivan
AU - Game, Laurence
AU - Turner, Claire E.
AU - Lamagni, Theresa
AU - Coelho, Juliana
AU - Sriskandan, Shiranee
N1 - Publisher Copyright:
© 2023 The Authors.
PY - 2023
Y1 - 2023
N2 - Streptococcus pyogenes genotype emm1 is a successful, globally distributed epidemic clone that is regarded as inherently virulent. An emm1 sublineage, M1UK, that produces increased levels of SpeA toxin was associated with increased scarlet fever and invasive infections in England in 2015/2016. Defined by 27 SNPs in the core genome, M1UK is now dominant in England. To more fully characterize M1UK, we undertook comparative transcriptomic and proteomic analyses of M1UK and contemporary non-M1UK emm1 strains (M1global). Just seven genes were differentially expressed by M1UK compared with contemporary M1global strains. In addition to speA, five genes in the operon that includes glycerol dehydrogenase were upregulated in M1UK (gldA, mipB/talC, pflD, and phosphotransferase system IIC and IIB components), while aquaporin (glpF2) was downregulated. M1UK strains have a stop codon in gldA. Deletion of gldA in M1global abrogated glycerol dehydrogenase activity, and recapitulated upregulation of gene expression within the operon that includes gldA, consistent with a feedback effect. Phylogenetic analysis identified two intermediate emm1 sublineages in England comprising 13/27 (M113SNPs) and 23/27 SNPs (M123SNPs), respectively, that had failed to expand in the population. Proteomic analysis of invasive strains from the four phylogenetic emm1 groups highlighted sublineage-specific changes in carbohydrate metabolism, protein synthesis and protein processing; upregulation of SpeA was not observed in chemically defined medium. In rich broth, however, expression of SpeA was upregulated ~10-fold in both M123SNPs and M1UK sublineages, compared with M113SNPs and M1global. We conclude that stepwise accumulation of SNPs led to the emergence of M1UK. While increased expression of SpeA is a key indicator of M1UK and undoubtedly important, M1UK strains have outcompeted M123SNPs and other emm types that produce similar or more superantigen toxin. We speculate that an accumulation of adaptive SNPs has contributed to a wider fitness advantage in M1UK on an inherently successful emm1 streptococcal background.
AB - Streptococcus pyogenes genotype emm1 is a successful, globally distributed epidemic clone that is regarded as inherently virulent. An emm1 sublineage, M1UK, that produces increased levels of SpeA toxin was associated with increased scarlet fever and invasive infections in England in 2015/2016. Defined by 27 SNPs in the core genome, M1UK is now dominant in England. To more fully characterize M1UK, we undertook comparative transcriptomic and proteomic analyses of M1UK and contemporary non-M1UK emm1 strains (M1global). Just seven genes were differentially expressed by M1UK compared with contemporary M1global strains. In addition to speA, five genes in the operon that includes glycerol dehydrogenase were upregulated in M1UK (gldA, mipB/talC, pflD, and phosphotransferase system IIC and IIB components), while aquaporin (glpF2) was downregulated. M1UK strains have a stop codon in gldA. Deletion of gldA in M1global abrogated glycerol dehydrogenase activity, and recapitulated upregulation of gene expression within the operon that includes gldA, consistent with a feedback effect. Phylogenetic analysis identified two intermediate emm1 sublineages in England comprising 13/27 (M113SNPs) and 23/27 SNPs (M123SNPs), respectively, that had failed to expand in the population. Proteomic analysis of invasive strains from the four phylogenetic emm1 groups highlighted sublineage-specific changes in carbohydrate metabolism, protein synthesis and protein processing; upregulation of SpeA was not observed in chemically defined medium. In rich broth, however, expression of SpeA was upregulated ~10-fold in both M123SNPs and M1UK sublineages, compared with M113SNPs and M1global. We conclude that stepwise accumulation of SNPs led to the emergence of M1UK. While increased expression of SpeA is a key indicator of M1UK and undoubtedly important, M1UK strains have outcompeted M123SNPs and other emm types that produce similar or more superantigen toxin. We speculate that an accumulation of adaptive SNPs has contributed to a wider fitness advantage in M1UK on an inherently successful emm1 streptococcal background.
KW - Streptococcus pyogenes
KW - genomics
KW - proteome
KW - scarlet fever
KW - superantigen
UR - http://www.scopus.com/inward/record.url?scp=85153687142&partnerID=8YFLogxK
U2 - 10.1099/mgen.0.000994
DO - 10.1099/mgen.0.000994
M3 - Article
C2 - 37093716
AN - SCOPUS:85153687142
SN - 2057-5858
VL - 9
JO - Microbial Genomics
JF - Microbial Genomics
IS - 4
M1 - 000994
ER -