TY - JOUR
T1 - Category-biased patches encircle core domain-general regions in the human lateral prefrontal cortex
AU - Assem, Moataz
AU - Shashidhara, Sneha
AU - Glasser, Matthew
AU - Duncan, John
N1 - Publisher Copyright:
© 2025 The Authors
PY - 2025/7/29
Y1 - 2025/7/29
N2 - The fine-grained functional organization of the human lateral prefrontal cortex (PFC) remains poorly understood. Previous fMRI studies delineated focal domain-general, or multiple-demand (MD), PFC areas that co-activate during diverse cognitively demanding tasks. While there is some evidence for category-selective (face and scene) patches, in human and non-human primate PFC, these have not been systematically assessed. Recent precision fMRI studies have also revealed sensory-biased PFC patches adjacent to MD regions. To investigate if this topographic arrangement extends to other domains, we analyzed two independent fMRI datasets (n = 449 and n = 37) utilizing the high-resolution multimodal MRI approaches of the Human Connectome Project (HCP). Both datasets included cognitive control tasks and stimuli spanning different categories: faces, places, tools and body parts. Contrasting each stimulus category against the remaining ones revealed focal interdigitated patches of activity located adjacent to core MD regions. The face and place results were robust, replicating across different executive tasks, experimental designs (block and event-related) and at the single subject level. In one dataset, where participants performed both category and sensory tasks, place patches overlapped with visually biased regions, while face patches were positioned between visual and auditory biases. Our results paint a refined view of the fine-grained functional organization of the PFC, revealing a recurring motif of interdigitated domain-specific and domain-general circuits. This organization offers new constraints for models of cognitive control, cortical specialization and development.
AB - The fine-grained functional organization of the human lateral prefrontal cortex (PFC) remains poorly understood. Previous fMRI studies delineated focal domain-general, or multiple-demand (MD), PFC areas that co-activate during diverse cognitively demanding tasks. While there is some evidence for category-selective (face and scene) patches, in human and non-human primate PFC, these have not been systematically assessed. Recent precision fMRI studies have also revealed sensory-biased PFC patches adjacent to MD regions. To investigate if this topographic arrangement extends to other domains, we analyzed two independent fMRI datasets (n = 449 and n = 37) utilizing the high-resolution multimodal MRI approaches of the Human Connectome Project (HCP). Both datasets included cognitive control tasks and stimuli spanning different categories: faces, places, tools and body parts. Contrasting each stimulus category against the remaining ones revealed focal interdigitated patches of activity located adjacent to core MD regions. The face and place results were robust, replicating across different executive tasks, experimental designs (block and event-related) and at the single subject level. In one dataset, where participants performed both category and sensory tasks, place patches overlapped with visually biased regions, while face patches were positioned between visual and auditory biases. Our results paint a refined view of the fine-grained functional organization of the PFC, revealing a recurring motif of interdigitated domain-specific and domain-general circuits. This organization offers new constraints for models of cognitive control, cortical specialization and development.
UR - http://www.scopus.com/inward/record.url?scp=105004346151&partnerID=8YFLogxK
U2 - 10.1016/j.neuropsychologia.2025.109164
DO - 10.1016/j.neuropsychologia.2025.109164
M3 - Article
AN - SCOPUS:105004346151
SN - 0028-3932
VL - 214
JO - Neuropsychologia
JF - Neuropsychologia
M1 - 109164
ER -