TY - JOUR
T1 - Bias in iterative reconstruction of low-statistics PET data
T2 - Benefits of a resolution model
AU - Walker, M. D.
AU - Asselin, M. C.
AU - Julyan, P. J.
AU - Feldmann, M.
AU - Talbot, P. S.
AU - Jones, T.
AU - Matthews, J. C.
PY - 2011/2/21
Y1 - 2011/2/21
N2 - Iterative image reconstruction methods such as ordered-subset expectation maximization (OSEM) are widely used in PET. Reconstructions via OSEM are however reported to be biased for low-count data. We investigated this and considered the impact for dynamic PET. Patient listmode data were acquired in [ 11C]DASB and [15O]H2O scans on the HRRT brain PET scanner. These data were subsampled to create many independent, low-count replicates. The data were reconstructed and the images from low-count data were compared to the high-count originals (from the same reconstruction method). This comparison enabled low-statistics bias to be calculated for the given reconstruction, as a function of the noise-equivalent counts (NEC). Two iterative reconstruction methods were tested, one with and one without an image-based resolution model (RM). Significant bias was observed when reconstructing data of low statistical quality, for both subsampled human and simulated data. For human data, this bias was substantially reduced by including a RM. For [11C]DASB the low-statistics bias in the caudate head at 1.7 M NEC (approx. 30 s) was -5.5% and -13% with and without RM, respectively. We predicted biases in the binding potential of -4% and -10%. For quantification of cerebral blood flow for the whole-brain grey-or white-matter, using [ 15O]H2O and the PET autoradiographic method, a low-statistics bias of <2.5% and <4% was predicted for reconstruction with and without the RM. The use of a resolution model reduces low-statistics bias and can hence be beneficial for quantitative dynamic PET.
AB - Iterative image reconstruction methods such as ordered-subset expectation maximization (OSEM) are widely used in PET. Reconstructions via OSEM are however reported to be biased for low-count data. We investigated this and considered the impact for dynamic PET. Patient listmode data were acquired in [ 11C]DASB and [15O]H2O scans on the HRRT brain PET scanner. These data were subsampled to create many independent, low-count replicates. The data were reconstructed and the images from low-count data were compared to the high-count originals (from the same reconstruction method). This comparison enabled low-statistics bias to be calculated for the given reconstruction, as a function of the noise-equivalent counts (NEC). Two iterative reconstruction methods were tested, one with and one without an image-based resolution model (RM). Significant bias was observed when reconstructing data of low statistical quality, for both subsampled human and simulated data. For human data, this bias was substantially reduced by including a RM. For [11C]DASB the low-statistics bias in the caudate head at 1.7 M NEC (approx. 30 s) was -5.5% and -13% with and without RM, respectively. We predicted biases in the binding potential of -4% and -10%. For quantification of cerebral blood flow for the whole-brain grey-or white-matter, using [ 15O]H2O and the PET autoradiographic method, a low-statistics bias of <2.5% and <4% was predicted for reconstruction with and without the RM. The use of a resolution model reduces low-statistics bias and can hence be beneficial for quantitative dynamic PET.
UR - http://www.scopus.com/inward/record.url?scp=79551702064&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/56/4/004
DO - 10.1088/0031-9155/56/4/004
M3 - Article
C2 - 21248391
AN - SCOPUS:79551702064
SN - 0031-9155
VL - 56
SP - 931
EP - 949
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 4
ER -