TY - JOUR
T1 - Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number
AU - Eales, Oliver
AU - Ainslie, Kylie E.C.
AU - Walters, Caroline E.
AU - Wang, Haowei
AU - Atchison, Christina
AU - Ashby, Deborah
AU - Donnelly, Christl A.
AU - Cooke, Graham
AU - Barclay, Wendy
AU - Ward, Helen
AU - Darzi, Ara
AU - Elliott, Paul
AU - Riley, Steven
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/9
Y1 - 2022/9
N2 - The time-varying reproduction number (Rt) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of Rt from case data. However, these are not easily adapted to point prevalence data nor can they infer Rt across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020–December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of Rt over the period of two subsequent rounds (6–8 weeks) and single rounds (2–3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in Rt over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in Rt over the summer of 2020 as restrictions were eased, and a reduction in Rt during England's second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.
AB - The time-varying reproduction number (Rt) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of Rt from case data. However, these are not easily adapted to point prevalence data nor can they infer Rt across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020–December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of Rt over the period of two subsequent rounds (6–8 weeks) and single rounds (2–3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in Rt over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in Rt over the summer of 2020 as restrictions were eased, and a reduction in Rt during England's second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.
KW - Bayesian P-spline
KW - COVID-19
KW - Cross-sectional study
KW - Reproduction number
KW - SARS-CoV-2
UR - http://www.scopus.com/inward/record.url?scp=85133312090&partnerID=8YFLogxK
U2 - 10.1016/j.epidem.2022.100604
DO - 10.1016/j.epidem.2022.100604
M3 - Article
C2 - 35780515
AN - SCOPUS:85133312090
SN - 1755-4365
VL - 40
JO - Epidemics
JF - Epidemics
M1 - 100604
ER -