TY - JOUR
T1 - Aerosol mass and size-resolved metal content in urban Bangkok, Thailand
AU - Matthews, James C.
AU - Navasumrit, Panida
AU - Wright, Matthew D.
AU - Chaisatra, Krittinee
AU - Chompoobut, Chalida
AU - Arbon, Robert
AU - Khan, M. Anwar H.
AU - Ruchirawat, Mathuros
AU - Shallcross, Dudley E.
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/11
Y1 - 2022/11
N2 - Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m−3, with highest concentrations in the cool season. The largest metal fractions present in the PM10 measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 μg m−3, respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead. Graphical abstract: [Figure not available: see fulltext.]
AB - Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m−3, with highest concentrations in the cool season. The largest metal fractions present in the PM10 measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 μg m−3, respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead. Graphical abstract: [Figure not available: see fulltext.]
KW - Air pollution
KW - Automotive exhaust
KW - Carcinogens
KW - Particulate matter
KW - Toxic metals
KW - Ultrafine aerosols
UR - http://www.scopus.com/inward/record.url?scp=85132313294&partnerID=8YFLogxK
U2 - 10.1007/s11356-022-20806-w
DO - 10.1007/s11356-022-20806-w
M3 - Article
AN - SCOPUS:85132313294
SN - 0944-1344
VL - 29
SP - 79025
EP - 79040
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 52
ER -